Finite Compactifications of $\omega^* \setminus \{x\}$

Max Pitz with Rolf Suabedissen

University of Oxford

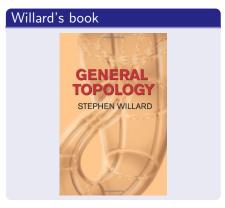
28 January 2014

Contents

- Inite compactifications of subsets of the Cantor space
- **②** A general framework and consequences for $\omega^* \setminus \{x\}$
- $\textbf{ o Rommon generalisation of } C \text{ and } \omega^*: \text{ the spaces } S_{\kappa}$
- Open questions

How this project started

Willard's book on Topology and a curious exercise about the Cantor set



Exercise 30.C

- Show that every open subset of the Cantor set C is homeomorphic either to C or to $C \setminus \{0\}$
- Proof uses Brouwer's characterisation: *C* is the unique zero-dim. compact metric space without isolated points

A first application

An alternative characterisation of the Cantor set

Definition (Diversity of a space)

The number of nonempty open subsets, up to homeomorphism, of a topological space X is called the *diversity of* X.

- Studied by Rajagopalan/Franklin '90 and Norden/Purisch/Rajagopalan '96.
- The Cantor set is compact of diversity 2.
- The Double Arrow is another example of a compact space of diversity 2 + many more.

Theorem (Gruenhage/Schoenfeld '75)

The Cantor set is topologically the unique compact metric space of diversity 2.

A first application

An alternative characterisation of the Cantor set

Definition (Diversity of a space)

The number of nonempty open subsets, up to homeomorphism, of a topological space X is called the *diversity of* X.

- Studied by Rajagopalan/Franklin '90 and Norden/Purisch/Rajagopalan '96.
- The Cantor set is compact of diversity 2.
- The Double Arrow is another example of a compact space of diversity 2 + many more.

Theorem (Gruenhage/Schoenfeld '75)

The Cantor set is topologically the unique compact metric space of diversity 2.

A second application

Finite compactifications of $C \setminus \{0\}$ are all homeomorphic

Theorem

The space $C \setminus \{0\}$ has arbitrarily large finite compactifications.

Theorem

All finite compactifications of $C \setminus \{0\}$ are homeomorphic to C.

Proof strategy:

- Either directly apply Brouwer's characterisation
- or choose a divide-and-conquer tactic

A second application

Finite compactifications of $C \setminus \{0\}$ are all homeomorphic

Theorem

The space $C \setminus \{0\}$ has arbitrarily large finite compactifications.

Theorem

All finite compactifications of $C \setminus \{0\}$ are homeomorphic to C.

Proof strategy:

- Either directly apply Brouwer's characterisation
- or choose a divide-and-conquer tactic

A framework for self-similar finite compactifications

The essence that made divide-and-conquer work

Lemma

Let X be a zero-dimensional compact Hausdorff space such that $X \oplus X$ is homeomorphic to X and for some point x of X (*) the one-point compactification of every clopen non-compact subset $A \subset X \setminus \{x\}$ is homeomorphic to X. Under these conditions, all finite compactifications of $X \setminus \{x\}$ are homeomorphic to X.

• Applies to all infinite compact Hausdorff spaces of diversity 2...

• ...and to ω^* .

The Stone-Čech remainder ω^* of the integers

A topological characterisation requiring the Continuum Hypothesis

- The Stone-Čech remainder ω^* is the space $\beta \omega \setminus \omega$.
- It is compact and zero-dimensional; disjoint open F_{σ} -sets have disjoint closures; non-empty G_{δ} -sets have infinite interior.
- A space with these properties is called *Parovičenko space*.

Theorem (Parovičenko '63; van Douwen/van Mill '78)

[CH] is equivalent to the assertion that every Parovičenko space of weight \mathfrak{c} is homeomorphic to ω^* .

Finite compactifications of $\omega^* \setminus \{x\}$

Many non-equivalent finite compactifications, but they are all homeomorphic

Theorem

[CH]. Any space $\omega^* \setminus \{x\}$ has arbitrarily large N-point compactifications.

Theorem

[CH]. All finite compactifications of $\omega^* \setminus \{x\}$ are homeomorphic to ω^* such that at most one point in the remainder is a non-P-point.

- Parovičenko space: compact and zero-dimensional; Disjoint open F_{σ} -sets have disjoint closures; Non-empty G_{δ} -sets have infinite interior.
- A point $p \in \omega^*$ is a *P*-point if $p \notin \partial U$ for all open F_{σ} -sets *U* of ω^* .

The κ -Parovičenko spaces of weight $\kappa^{<\kappa}$

A common generalisation of C and ω^{*} to higher cardinals

 κ-Parovičenko space: compact and zero-dimensional; Disjoint open F_{<κ}-sets have disjoint closures; Non-empty G_{<κ}-sets have infinite interior.

Brouwer 1910: C	Parovičenko '63: ω^*	Negrepontis '69: S_{κ}
There is a unique	Under [CH] there is a	Under the assumption
zero-dim. cpt. space	unique Parovičenko	$\kappa = \kappa^{<\kappa}$ there is a
of weight ω without isolated points.	space of weight $\mathfrak{c} = \omega_1.$	unique κ -Parovičenko space of weight κ .

• It follows that $S_{\omega} = C$ and under [CH] that $S_{w_1} = \omega^*$.

Finite compactifications of $S_{\kappa} \setminus \{x\}$

Again: many non-equivalent finite compactifications, but they are all homeomorphic

Theorem

Let $\kappa = \kappa^{<\kappa}$. Any space $S_{\kappa} \setminus \{x\}$ has arbitrarily large N-point compactifications.

Theorem

Let $\kappa = \kappa^{<\kappa}$. All finite compactifications of $S_{\kappa} \setminus \{x\}$ are homeomorphic to S_{κ} such that at most one point in the remainder is a non- P_{κ} -point.

• A point $p \in S_{\kappa}$ is a P_{κ} -point if its neighbourhood filter is $< \kappa$ -complete.

Further questions

Question

Is the Cantor set X the unique compact metrizable space such that $X \setminus \{x\}$ has self-similar compactifications for all x?

• One would need to aim for zero-dimensionality.

Question

Find a characterisation for self-similar compactifications. Is property (\star) necessary?

Question

Is it consistent that there is a finite compactification of $\omega^* \setminus \{x\}$ that is not homeomorphic to ω^* ?

• It is a Parovičenko space of weight c containing a P-point.