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How this project started
Willard’s book on Topology and a curious exercise about the Cantor set

Willard’s book Exercise 30.C

Show that every open subset
of the Cantor set C is
homeomorphic either to C
or to C \ {0}
Proof uses Brouwer’s
characterisation: C is the
unique zero-dim. compact
metric space without
isolated points
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A first application
An alternative characterisation of the Cantor set

Definition (Diversity of a space)

The number of nonempty open subsets, up to homeomorphism, of
a topological space X is called the diversity of X.

Studied by Rajagopalan/Franklin ’90 and
Norden/Purisch/Rajagopalan ’96.

The Cantor set is compact of diversity 2.

The Double Arrow is another example of a compact space of
diversity 2 + many more.

Theorem (Gruenhage/Schoenfeld ’75)

The Cantor set is topologically the unique compact metric space of
diversity 2.
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A second application
Finite compactifications of C \ {0} are all homeomorphic

Theorem

The space C \ {0} has arbitrarily large finite compactifications.

Theorem

All finite compactifications of C \ {0} are homeomorphic to C.

Proof strategy:

Either directly apply Brouwer’s characterisation

or choose a divide-and-conquer tactic
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A framework for self-similar finite compactifications
The essence that made divide-and-conquer work

Lemma

Let X be a zero-dimensional compact Hausdorff space such that
X ⊕X is homeomorphic to X and for some point x of X
(?) the one-point compactification of every clopen non-compact

subset A ⊂ X \ {x} is homeomorphic to X.
Under these conditions, all finite compactifications of X \ {x} are
homeomorphic to X.

Applies to all infinite compact Hausdorff spaces of diversity
2...

...and to ω∗.
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The Stone-Čech remainder ω∗ of the integers
A topological characterisation requiring the Continuum Hypothesis

The Stone-Čech remainder ω∗ is the space βω \ ω.

It is compact and zero-dimensional; disjoint open Fσ-sets have
disjoint closures; non-empty Gδ-sets have infinite interior.

A space with these properties is called Parovičenko space.

Theorem (Parovičenko ’63; van Douwen/van Mill ’78)

[CH] is equivalent to the assertion that every Parovičenko space of
weight c is homeomorphic to ω∗.
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Finite compactifications of ω∗ \ {x}
Many non-equivalent finite compactifications, but they are all homeomorphic

Theorem

[CH]. Any space ω∗ \ {x} has arbitrarily large N -point
compactifications.

Theorem

[CH]. All finite compactifications of ω∗ \ {x} are homeomorphic to
ω∗ such that at most one point in the remainder is a non-P -point.

Parovičenko space: compact and zero-dimensional; Disjoint
open Fσ-sets have disjoint closures; Non-empty Gδ-sets have
infinite interior.

A point p ∈ ω∗ is a P -point if p /∈ ∂U for all open Fσ-sets U
of ω∗.
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The κ-Parovičenko spaces of weight κ<κ

A common generalisation of C and ω∗ to higher cardinals

κ-Parovičenko space: compact and zero-dimensional; Disjoint
open F<κ-sets have disjoint closures; Non-empty G<κ-sets
have infinite interior.

Brouwer 1910: C

There is a unique
zero-dim. cpt. space
of weight ω without
isolated points.

Parovičenko ’63: ω∗

Under [CH] there is a
unique Parovičenko
space of weight
c = ω1.

Negrepontis ’69: Sκ

Under the assumption
κ = κ<κ there is a
unique κ-Parovičenko
space of weight κ.

It follows that Sω = C and under [CH] that Sw1 = ω∗.
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Finite compactifications of Sκ \ {x}
Again: many non-equivalent finite compactifications, but they are all homeomorphic

Theorem

Let κ = κ<κ. Any space Sκ \ {x} has arbitrarily large N -point
compactifications.

Theorem

Let κ = κ<κ. All finite compactifications of Sκ \ {x} are
homeomorphic to Sκ such that at most one point in the remainder
is a non-Pκ-point.

A point p ∈ Sκ is a Pκ-point if its neighbourhood filter is
< κ-complete.
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Further questions

Question

Is the Cantor set X the unique compact metrizable space such
that X \ {x} has self-similar compactifications for all x?

One would need to aim for zero-dimensionality.

Question

Find a characterisation for self-similar compactifications. Is
property (?) necessary?

Question

Is it consistent that there is a finite compactification of ω∗ \ {x}
that is not homeomorphic to ω∗?

It is a Parovičenko space of weight c containing a P -point.
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